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a b s t r a c t

A simplified Lagrangian-based theory and practical computation of the longitudinal dis-

tribution of fertilizer injected into the inflow to a border strip, basin or furrow is presented as

an adjunct to an existing surface-irrigation simulation model. The simplification consists

primarily in the assumption that the chemicals are non-reactive and move by advection of

the flowing water and that no mixing, dispersion, or diffusion of the chemical takes place. In

a corollary calculation, the composition of runoff, in terms of water fractions selected for

fertilizer injection, is also simulated. Comparisons of calculated post-irrigation longitudinal

distribution of infiltrated chemical are made with the results of a complete advection-

diffusion model that had already been validated in the field for injection of fertilizer pulses

into the furrow inflow.
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1. Introduction

To ensure that all the plants in a field receive sufficient

fertilizer without excesses that can lead to ground water

pollution, the amount applied and its distribution over the

cropped area need to be controlled. The convenience and

control of fertilizer applied with irrigation water has made

fertigation a common technique with pressurized irrigation

systems. The method is also used by growers with surface

irrigation systems. In this context, it is still easy to control the

injection schedule of fertilizer, but difficult to relate the

injection timing to the resultant post-irrigation distribution of

fertilizer in the field. Thus, it is difficult to make recommenda-

tions on whether to apply fertilizer during the entire irrigation

period, or during selected fractions of it, e.g., the first half, or

middle third, or in pulses, etc.
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Subject to some significant assumptions, a simple addition

to the existing surface irrigation simulation software, SRFR

(Strelkoff et al., 1998), allows calculation of the ultimate

longitudinal distribution of chemical consequent to any trial

injection schedule. This allows playing a number of what-if

scenarios in the search for an optimum. Assuming that at the

point of injection the chemical is uniformly mixed across the

area of flow, and remains identified with the water into which

it was injected, the volume of irrigation-water inflow is divided

into a selected number of fractions, and the ultimate long-

itudinal distribution of infiltrated depth from each of the

fractions is calculated. The distribution of infiltrated chemical

is then the same as that of the water fraction into which it was

injected.

The theory governing the tracking of the fractions of

applied water is based on the assumption that no mixing takes
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Fig. 1 – Distribution of surface and infiltrated waters from

two inflowing fractions. Surface depth: y; infiltrated depth:

z; distance from upstream end: x. (a) Fraction 1 is wholly

on the field; fraction 2 about to enter, (b) fraction 2 wholly

on field; fraction 3 ready to enter and (c) same as (b), but

first infiltrated fraction is plotted below second infiltrated

fraction.
place between the fractions. Fractions released earlier into the

surface flow are assumed to move down the flow channel

ahead of fractions released later; impenetrable walls, moving

at the average water velocity at the particular cross section,

are assumed between the fractions. The downstream-most

fraction, if it gets to the end of the flow channel, either runs off,

or piles up against a check, to a depth determined by the

stream-simulation part of SRFR, until it has all either runoff or

infiltrated. SRFR expresses mass and momentum conserva-

tion in a series of water-filled cells with boundaries k = 1, 2,

3, . . . , N, solves the resulting equations for depth and

discharge at all k over a sequence of computational time

steps, and so predicts the water surface profile as it evolves

over time.

Assuming uniform flow velocity along a furrow, Boldt et al.

(1994) developed a similar procedure (SIFUM—Surge Irrigation

Fertigation Uniformity Model) for utilizing files generated by

an early version of the surface-irrigation software, SIRMOD

(Surface Irrigation Model, Walker, 2003). Sabillon and Merkley

(2004) developed a stand-alone model that in an implicit

numerical scheme solves the partial differential equations of

continuity, momentum, and fertilizer mass balance in a purely

advective context, with diffusion limited to numerical

sources. Perea-Estrada (2005) solved an advection-diffusion

equation using a split operator approach to deal with the

advection and dispersion aspects of the fertilizer transport

sequentially at each time step, rather than simultaneously. To

avoid numerical diffusion in the advection calculation, Perea-

Estrada employed a method of characteristics, with the

inverse slopes of the characteristic curves equal to local water

velocity. Cubic-spline interpolation allowed him to determine

fertilizer concentration on a particular segment of a char-

acteristic curve with accuracy (see also Strelkoff and Sakkas,

1974; Katopodes and Strelkoff, 1977; Strelkoff and Clemmens,

2006, for other examples of characteristics in simulating

surface irrigation). The calculation of turbulent diffusion was

performed for each time and space node by the Crank–

Nicholson scheme. The coefficient of longitudinal dispersion

was calculated by the Fischer equation (Eq. (5.19) in Fischer

et al., 1979) for flows with substantial velocity variation in a

cross section, both laterally and vertically. Below, results of

the proposed simple, advective numerical scheme are

compared with Perea-Estrada’s results. The comparison

suggests that in the advection-dominant case of furrow flow,

useful results are obtained with the simple method proposed.
2. Qualitative considerations

Fig. 1 illustrates the surface and infiltrated volumes of water

after the first two fractions have been released. Fig. 1(a)

represents time T when all of fraction 1 has been released

and fraction 2 is about to enter the field. Fig. 1(b) refers to time

T , when all of fraction 2 is on the field, and fraction 3 is just

about to enter. With a constant inflow rate and equal fractions,

T = 2T . The y-axis represents surface-water depth and the

z-axis, the infiltrated depth, while x is distance down the field.

The encircled numbers identify the origin of the various

portions of surface and infiltrated water. The heavy vertical

line represents the impenetrable wall separating the surface
water fractions 1 and 2. In Fig. 1(b), infiltrated water depths

from fraction 1 are found on both sides of the wall. The darker

shaded area represents the infiltrated water from fraction 1 at

time T . Additional infiltration of 1-water occurs in the time

interval between T and T on the downstream side of the

wall as it moves downstream during that period. The heavy

line in the figure separates infiltrated 1-water (lightly shaded)

from 2-water (not shaded) infiltrated in the same time period.

The vertical distances between the curves represent merely

the volume per unit field area (depth) of infiltration of the

various components; the curves are not intended to imply the

location in the soil profile of these fractions—fraction 2-water

is not below fraction 1-water. Part (c) of the figure, on the other

hand, represents the same physical situation as part (b),

except that infiltrated 1-water has been plotted below the

infiltrated 2-water to illustrate the consequences of an

additional assumption that water infiltrated earlier at some

point in a furrow proceeds downward through the soil ahead

of water infiltrated later. This assumption is not needed, if the

purpose of the calculations is to determine the post-irrigation

longitudinal uniformity of the fertilizer application. It plays a

role only if one is concerned about the fate of the fertilizer once

it has entered the soil, e.g., whether it lies within the root zone

for crop uptake, or below the root zone, on its way toward the

groundwater, etc.
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3. Mass balances

Fig. 2 illustrates the stream lengths of surface-water fractions

at two arbitrary times, tA and tB, during the irrigation (with

tB > tA). A number of SRFR time steps have elapsed between tA
and tB. Infiltrated depths are not shown here. The light vertical

lines are the computational cell boundaries in SRFR’s solution

grid. The dotted vertical lines are explained further on. The

heavy vertical lines are, again, the nominal boundaries

between the various water fractions at the end of the pertinent

time step. Each fraction consists, typically, of a number of

SRFR cells and is labeled by the order in which it was released

into the field, 1, 2 and so on, up eventually to NF, the total

number of fractions into which the inflow volume is divided

(user-selectable in SRFR). Each fraction in contact with the soil

surface infiltrates its water into the soil directly below (as in

Fig. 1). During the course of a time step, infiltration from the

mth fraction takes place from the portion of the surface stream

contained between the bounding k values for that fraction (k

being the distance step index, as in Fig. 2). At the end of any

SRFR time step, the accumulated depth of infiltration zmk,2 at a

k value lying within the set associated with m is given by:

zmk;2 ¼ zmk;1 þ
Azk;2 � Azk;1

W
(1)

in which, the subscripts 1 and 2 correspond to the beginning

and end of the time step, respectively, the Az are the volumes

infiltrated per unit length of channel (a dependent simulation

variable calculated by SRFR) and W is the representative width

associated with the flow channel, relating the field depth of

infiltration to the volume infiltrated per unit length of channel.

It is apparent from Eq. (1) that the principal task in keeping

track of the depths zm of infiltrated m-water consists in track-

ing the boundaries between the fractions.

The impenetrable interfaces move downstream and closer

together as the surface water between them is used up in

infiltration. The movement of the most downstream one,

furthermore, is accelerated by any runoff. Initially, m = 1, i.e.,

only 1-water has entered the field, and there is as yet no
Fig. 2 – Partitioning of inflow into fractions at two times, tA

and tB (tB > tA). k: SRFR cell boundaries for simulation of

irrigation. Encircled numbers: sequence of released inflow

fractions. Dotted lines: location of boundaries between

fractions with exact volume balance. Solid lines: nominal

boundaries between fractions.
interface with 2-water. Once the total volume of 1-water, VQ1,

has entered the field, 2-water follows on its heels. The location

of the interface between them is found through a fraction-by-

fraction mass balance, pertinent at every subsequent time

level of the simulation:

VQm
¼ VZm þ VROm þ VYm (2)

in which, in the case of equal sized fractions, VQm ¼ VQHYD=NF

(VQHYD is the total volume represented by the inflow hydro-

graph). As noted, VQm is user selectable, e.g., to correspond to

pulses of injected fertilizer as in the example below. VZm is the

current infiltrated volume of fraction m, VROm is the current

runoff volume of m-water, and VYm is the current volume of m-

water remaining on the surface. The interface location is

implicit in the infiltrated-volume and surface-volume calcula-

tions, since, at any given time level, there will be just one

location along the length of the flow channel at which Eq. (2)

will be satisfied for each water fraction on the field. The dotted

vertical lines in Fig. 2 represent those non-grid x-values at

which calculated sums of surface, infiltrated, and runoff

volumes (from 2-water, for the example in Fig. 2) would

exactly equal the volume of 2-water released. For computa-

tional simplicity, the boundaries of the fractions, theoretically

located in the interior of a cell, are nominally placed at the

nearest downstream cell boundary. The finer is the SRFR grid,

the smaller are the cells and the closer is this approximation.

The calculations in SRFR proceed cell by cell going

upstream, starting from the downstream-most cell. That cell

contains water of fraction, mmin, by definition the earliest-

released fraction still on the field—all water fractions

identified by smaller m have, by this time, either infiltrated

or run off or both (initially, of course, mmin = 1). In the progress

of calculations from downstream to upstream, when at a cell

the sum of surface water, infiltration, and runoff volumes

associated with a particular fraction m (i.e., the totals

calculated for all cells from the impenetrable interface

downstream, up to and including the current cell) exceeds

the given volume of the fraction, the cell-index of the nominal

upstream bounding interface is given by the k on the

downstream side of the cell (the dotted line in Fig. 2(b)

illustrates the passage of mmin from 2 to 3). It follows that the

infiltration increment from that cell is attributed to the next

fraction released, m + 1, as is the increment of surface water in

that cell, thus incurring a small error in the identity of water

particles, but not influencing the total volume balance. At any

time level, the infiltration and volume calculations start at

k = N and end at k = 1 (N, under the name NZP2, is a SRFR

simulation variable, the total number of cell boundaries at the

end of a time step). In effect, then, at every time level, every k is

associated with one or another value of m.

Of note, it is possible, in principle, to use up a fraction, m,

from the surface stream while m + 1 and m � 1 are still on the

surface.

Ultimately, after all applied water has receded from the

soil, the zm values accumulated under Eq. (1) constitute the

distances between adjacent plotted post-irrigation fertigation

profiles (illustrated further on as Figs. 4–10).

A flow chart schematic of the fertigation-distribution

computations undertaken at the end of every SRFR-simulation
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Fig. 3 – Flow chart for fertigation-distribution computations.
time step is depicted in Fig. 3 (certain variables are, as noted,

initialized prior to the first step of simulation). In the flow

chart, it should be noted that the equal sign (=) represents a

replacement of value, rather than an algebraic equality. The

quantity dVRO is the increment of runoff incurred over the time
step. ÃZ and ÃY are, respectively, the average infiltrated

volume per unit length over one grid cell, and average cross

sectional area of flow in a cell (surface volume per unit length).

Subscripts 1 and 2 represent, respectively, the beginning and

end of a time step. It is seen that most of the computation is
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Fig. 4 – Post-irrigation longitudinal distribution of eight

water fractions. Vertical distance between neighboring

fractions is the depth of that fraction. Open ended sloping

furrows. Advance time = 97 min; cutoff at 240 min.

Fig. 5 – Water fractions identified in runoff hydrograph;

cutoff at 240 min. Inflow hydrograph is shown (gray scale)

for comparison.
devoted to partitioning the surface stream into segments

identified by the m-water of which they are constituted. The

segments consist of those cells that contributed to the

infiltration of m-water during the previous time step. In the

process, the infiltration profiles of m-water are updated. As a

potential convenience to the reader with a local simulation

program who might wish to insert therein the pertinent

statements, the Fortran code corresponding to these compu-

tations is available from the senior author upon request.
Fig. 6 – Post-irrigation longitudinal distribution of eight

water fractions. Vertical distance between neighboring

fractions is the depth of that fraction. Open ended sloping

furrows. Advance time = 97 min; cutoff at 100 min.

Fig. 7 – Water fractions identified in runoff hydrograph;

cutoff at 100 min. Inflow hydrograph is shown (gray scale)

for comparison.
4. Sample applications

Figs. 4–10 illustrate the distribution of eight equal inflow

fractions in the infiltrated water and runoff under a variety of

scenarios. Again, the distance between infiltration curves

represents the depth of infiltration of a particular fraction. Of

note, the coordinates of the curves are recorded (in SI units) in

an output text file produced in every SRFR simulation. These

files are read by SRFR itself to plot output data as requested by

the user, but they also remain on disk for any other

calculations a user may require.

In the runs illustrated in Figs. 4–8, the flow channels are

200 m long trapezoidal furrows with bottom width of 250 mm,

side slopes 1 on 1, and set 1 m apart on a slope of 0.0004.

Infiltration is calculated by the Kostiakov power law, kta, with t

infiltration time, k = 42.85 mm/ha, and a = 0.526, and a nominal

wetted perimeter equal to the furrow spacing; Manning

n = 0.04. The inflow rate in each case is 2 L/s, leading to an

advance time (to reach field end) of 97 min. For Fig. 9, all

conditions are the same except that the furrow is level, with an

advance time of 108 min.

Fig. 4 is for an open-ended furrow. Cutoff is at 240 min.

Evidently, water from fraction 1 never reaches the portion of

the field beyond 155 m. The distribution from fraction 2

extends over the entire length of run (as do all subsequent

fractions), the depth rising gradually to a peak at 155 m, with a

subsequent decrease over the remaining 45 m. Fig. 5, showing

the fractions as they supercede one another in the runoff

hydrograph, is derived from the aforementioned SRFR-output
text file. If the chemical composition of runoff destined for

reuse or off-site discharge is of interest, the volumes

associated with each fraction can play a role in selecting

those in which to inject the fertilizer.



a g r i c u l t u r a l w a t e r m a n a g e m e n t 8 6 ( 2 0 0 6 ) 9 3 – 1 0 198

Fig. 8 – Post-irrigation longitudinal distribution of eight

water fractions. Vertical distance between neighboring

fractions is the depth of that fraction. Closed-end sloping

furrows. Advance time = 97 min; cutoff at 100 min.

Fig. 9 – Post-irrigation longitudinal distribution of eight

water fractions. Vertical distance between neighboring

fractions is the depth of that fraction. Closed-end level

furrows. Advance time = 108 min; cutoff at 100 min.

Fig. 10 – Effect of solution grid on post-irrigation

longitudinal distribution of four source fractions. Closed-

end sloping basin. Advance time = 160 min; cutoff at

180 min. Dashed curve: 20 cells; solid curve: 80 cells;

dotted curve: 140 cells.
Fig. 6 is for the same furrow conditions, but with inflow

cutoff at 100 min—note the scale difference with Fig. 4. It is of

interest that the last fraction to enter the furrow as well as the

first and second do not reach the end. Fig. 7 shows the runoff

composed of the various fractions in this case.

In Fig. 8, the sloping furrow is blocked to prevent outflow,

with all else the same. In Fig. 9, the blocked furrow is level. Not

surprisingly, the blocked ends yield distributions markedly

different from those with a free outflow, as the early fractions

are ponded on the surface at the downstream end. There are

significant differences, as well, between the level (Fig. 9) and

sloping (Fig. 8) blocked furrows. The early fractions are

distributed in about the same way, but the sixth, seventh,

and eighth fractions in the sloping case are pushed down-

stream and have greater magnitudes. These phenomena have

significant implications for fertigation strategies; for example

in Fig. 9, the longitudinal infiltration profile of the middle half

of the inflow is given by the vertical distance in the shaded

area between the two heavy black curves.

The simulations described were run with fine grids to

minimize the coarseness of the resolution stemming from the

aforementioned nominal interface between m and m + 1 water.

Sometimes, the cumulative-infiltration formula is char-

acterized by a significant constant term, typical of cracked clay

soils. Then, the infiltration profile possesses a discontinuous

step front, reflecting the essentially instantaneous infiltration

of some depth as soon as the water is made available at the

surface. In this case, the SRFR-output text file is augmented

with rows of data providing a second ordinate (zero depth) at

each x-value marking the advancing surface-stream front.

This allows the plot to exhibit the correct discontinuous

infiltration-profile front without affecting the plotting of the

remaining fractions. Fig. 10 is for a 180 m-long blocked-end

basin 4.5 m wide, with Manning n = 0.04 set on a slope of

0.0008. Infiltration is characterized by a Modified Kostiakov

formula, kta + bt + c, with k = 13 mm/ha, a = 0.43, b = 15.5 mm/

h and c = 20 mm. The inflow rate is 6.55 L/s for 180 min

(advance time is 160 min). The four identified fractions of

inflow lead to the profiles shown.
The three sets of curves show the effect of variable cell size

on the profiles, with grids of 20, 80 and 140 cells featured. A

coarse grid with the proposed stair-step approach to deter-

mining the boundaries of the fractions can cause an earlier

water fraction to be misidentified as a later fraction, as in the

first quarter volume in Fig. 10, or artificially moved upstream,

as in the third quarter fraction. These errors are significantly

reduced by employing a finer grid in the SRFR simulation. At

the same time, while a 20-cell grid may well be too coarse, little

improvement is seen for this example in going from 80 to 140

grid cells. In any event, the procedures outlined do not

influence the ultimate distribution of water—only its parti-

tioning amongst the fractions. Inasmuch as alternate fractions

could be carrying a constituent, such as fertilizer solute

described in the next section, these numerical errors would

affect the ultimate longitudinal distribution. Noting the mass

error, reflected in the difference between fertilizer injected,

infiltrated, and run off, allows a user to assess the magnitude

of the impact.
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Fig. 11 – Infiltration of successive water fractions controlled

by pulses of injected fertilizer. Open-ended furrow, #1 in

MAC field experiments.

Fig. 12 – Post-irrigation distribution of mass per unit length

in open-ended furrow, #1. Comparison of proposed

simplified model and solution of ADE partial differential

equation. Solid line: proposed advection solution; dashed

line: advection-diffusion model (Perea-Estrada, 2005) with

longitudinal diffusion coefficient given by Fischer formula.
5. Application to pulse fertigation. Model
verification

As pointed out by Walker (2004), the simple addition of a

concentration term to the computations allows the prospec-

tive user to see the impact of various injection timings on the

ultimate mass distribution of a non-reactive chemical (be it

fertilizer, pesticide or herbicide). Fig. 11 (free-draining furrow)

and Fig. 13 (blocked-end furrow) illustrate the infiltration

profiles of water fractions determined by the timing of pulses

of fertilizer injected into the furrow irrigation water. As

described in Perea-Estrada (2005), a program of tracer-

concentration measurements in a field experiment at the

University of Arizona, Maricopa Agricultural Center (MAC),

served to verify the predictions of a model based on solution of

the advection-diffusion equation (ADE). Input data for the ADE

solution comprised SRFR-simulated depths and velocities. In

the open furrow, #1 in the experiments, the pulses of fertilizer

were injected in accord with Table 1. Fertilizer-tank concen-

tration remained constant at 247.4 g/L. The high concentration

was chosen to ensure that even after dilution in the furrow

flow, the tracer would be measurable over the peaks and

hollows of the hydrographs as they swept downstream. Fig. 11

shows the infiltration contributed by each fraction of water—

those containing tracer are shaded. Fig. 12 gives the post-

irrigation distribution of infiltrated chemical (g/m). This

represents the contributions of all the shaded areas of

Fig. 11, which in this case, were all at the same concentration

C, since the injection rate QPULSE was the same for each pulse,
Table 1 – Fertigation pulse history: furrow #1—open end

Begin pulse
(min)

End pulse
(min)

Injection rate
(mL/min)

15 25 190

40 50 190

65 75 190

90 100 190

115 125 190

140 150 190
and the average inflow rate Q̄ IN was assumed the same for all

fractions in calculating the (unequal) fraction volumes (in fact,

the measured instantaneous rate varied a little in the field; this

was mirrored in the ADE solution). Indeed:

Cmffi
QPULSEm

CTANK

60Q̄ IN

¼
CTANKQPULSEm

ðTEND PULSEm � TBEGIN PULSEm Þ
VQm

(3)

the approximation becoming ever more exact as the injection

flow rate is much smaller than the furrow inflow. Thus, an

ordinate in Fig. 12 is calculated by summing up the segments

of shaded ordinates from bottom to top in Fig. 11, weighted by

the concentration in each segment. The peaks and valleys in

Fig. 12 are the result of the timing and length of pulse applica-

tions, time variations in infiltration, and potentially, variations

in concentration at each injection. The major part of the first

peak in Fig. 12, at about 80 m, reflects the large ordinate in the

first shaded water fraction at 80 m in Fig. 11, while the peak at

around 140 m reflects the large ordinate there in the second

shaded fraction in Fig. 11.

The essential features of the field-validated ADE solution

are duplicated by the proposed simplified model in this

advection dominated case. The mild effects of turbulent

dispersion are evident in the downstream portions, where the

second peak in particular is somewhat delayed and reduced.
Table 2 – Fertigation pulse history: furrow #4—closed end

Begin pulse
(min)

End pulse
(min)

Injection rate
(mL/min)

15 25 180

40 50 180

65 75 180

86 96 180

111 121 180
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Fig. 13 – Infiltration of successive water fractions controlled

by pulses of injected fertilizer. Blocked-ended furrow, #4 in

MAC field experiments.

Fig. 15 – Post-irrigation distribution of mass per unit length

in blocked furrow, #4. Comparison of proposed simplified

model and solution of ADE partial differential equation

without dispersion. Solid line: proposed advection

solution; dashed line: advection-diffusion model (Perea-

Estrada, 2005), with longitudinal dispersion coefficient set

to 0.
As noted above, the longitudinal dispersion coefficient in the

ADE was calculated by the Fischer et al. (1979) formula for the

hydraulic conditions at each point in space and time, with a

typical value at about 1 m2/min.

Fertigation in a blocked-end furrow (furrow #4 in the MAC

field experiments) is presented in Figs. 13 and 14, for which the

injection details are given in Table 2. In this case, the tank

concentration was 240.8 g/L. The peaks in Fig. 14 are more

extreme and varied, because the infiltration of the pertinent

(loaded) fractions is more extreme and varied in the blocked-

end case (see Fig. 13).

The details of the effects of longitudinal dispersion are

more pronounced than in the free-draining case, though the

overall pattern of distribution as calculated by the proposed

simplified model in Fig. 14 agrees with the ADE model

results. That the differences in solutions are attributable to

longitudinal dispersion is made clear in Fig. 15, for which the

ADE equation was solved in a purely advective context, with

the longitudinal dispersion coefficient set to 0. Of note, the
Fig. 14 – Post-irrigation distribution of mass per unit length

in blocked furrow, #4. Comparison of proposed simplified

model and solution of ADE partial differential equation.

Solid line: proposed advection solution; dashed line:

advection-diffusion model (Perea-Estrada, 2005), with

longitudinal diffusion coefficient given by Fischer formula.
mass error in the simplified calculation is very small, with

2.167 kg injected, determined by monitoring the injection

schedule, and 2.164 kg infiltrated, calculated by integrating

the application density over the length. In the open-end

case, the mass carried in the tail water needs to be included

in the balance.
6. Conclusions

A simple scheme coupled to an existing surface irrigation

simulation model has been proposed for tracking the

successive fractions of inflowing water as they infiltrate into

the soil surface or run off downstream. When fertilizer is

injected into selected fractions in fertigation, such a simula-

tion can be used to predict the post-irrigation longitudinal

distribution of fertilizer as well as the discharge of fertilizer in

the runoff stream. The main assumption in the model is that

there is no mixing of the water fractions, and that the

chemical remains with the water into which it was injected.

The origins of the model are clearly Lagrangian, for as coarse

as the analysis is, the individual fractions of water are in fact

tracked during the irrigation. As such, the approach inher-

ently avoids numerical diffusion. Numerical error in the

distribution of fertilizer from the individual fractions can be

monitored by checking the mass balance after the irrigation is

complete.

Acknowledgements

The writers are grateful to Floyd Adamsen and Douglas

Hunsaker of the U.S. Arid-Lands Agricultural Research Center

for their assistance in planning and running the field tracer

experiments used in validating the Perea-Estrada advection-

diffusion model, which was then used herein for comparison

with the simplified solution in Figs. 12, 14 and 15.



a g r i c u l t u r a l w a t e r m a n a g e m e n t 8 6 ( 2 0 0 6 ) 9 3 – 1 0 1 101
r e f e r e n c e s

Boldt, A.L., Watts, D.G., Eisenhauer, D.E., Schepers, J.S., 1994.
Simulation of water applied nitrogen distribution under
surge irrigation. Trans. ASAE 37, 1157–1165.

Fischer, H.B., Imberger, J., List, J.E., Koh, R.C.Y., Brooks, N.H.,
1979. Mixing in Inland and Coastal Waters. Academic Press
Inc., New York, NY.

Katopodes, N.D., Strelkoff, T., 1977. Hydrodynamics of border
irrigation – Complete model. J. Irrig. Drain. Eng. ASCE 103,
309–324.

Perea-Estrada, H., 2005. Development, verification and evaluation
of a solute transport model in surface irrigation. Ph.D.
Dissertation. Department of Agricultural and Biosystems
Engineering, The University of Arizona, Tucson, AZ.

Sabillon, G.N., Merkley, G.P., 2004. Fertigation guidelines for
furrow irrigation. Spanish J. Agric. Res. 2, 576–587.
Strelkoff, T.S., Clemmens, A.J., Schmidt, B.V., 1998. SRFR,
Version 3.31—A Model for Simulating Surface Irrigation in
Borders, Basins and Furrows. U.S. Arid-Lands Agricultural
Research Center, USDA/ARS, 21881 N. Cardon Lane,
Maricopa, AZ.

Strelkoff, T.S., Sakkas, J.G., 1974. Hydrodynamics of surface
irrigation—advance phase. J. Irrig. Drain. Eng. ASCE 100,
31–48.

Strelkoff, T.S., Clemmens, A.J., 2006. Hydraulics of surface
systems. In: Hoffman, G.J., Evans, R.G., Jensen, M.E., Martin,
D.L., Elliott, R.L. (Eds.), Design and Operation of On Farm
Irrigation Systems, second ed. (Chapter 13), ASABE Special
Monograph, in press.

Walker, W.R., 2003. SIRMOD—Surface Irrigation Simulation,
Evaluation and Design. User’s Guide and Technical
Documentation. Biological and Irrigation Engineering, Utah
State University, Logan, Utah, 63 p.

Walker, W.R., 2004. Personal communication.


	Calculation of non-reactive chemical distribution �in surface fertigation
	Introduction
	Qualitative considerations
	Mass balances
	Sample applications
	Application to pulse fertigation. Model verification
	Conclusions
	Acknowledgements
	References


